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21
Markov Decision 
Processes

Chapter 16 introduced Markov chains and their analysis. Most of the chapter was devoted
to discrete time Markov chains, i.e., Markov chains that are observed only at discrete
points in time (e.g., the end of each day) rather than continuously. Each time it is ob-
served, the Markov chain can be in any one of a number of states. Given the current state,
a (one-step) transition matrix gives the probabilities for what the state will be next time.
Given this transition matrix, Chap. 16 focused on describing the behavior of a Markov
chain, e.g., finding the steady-state probabilities for what state it is in.

Many important systems (e.g., many queueing systems) can be modeled as either a
discrete time or continuous time Markov chain. It is useful to describe the behavior of
such a system (as we did in Chap. 17 for queueing systems) in order to evaluate its per-
formance. However, it may be even more useful to design the operation of the system so
as to optimize its performance (as we did in Chap. 18 for queueing systems).

This chapter focuses on how to design the operation of a discrete time Markov chain
so as to optimize its performance. Therefore, rather than passively accepting the design
of the Markov chain and the corresponding fixed transition matrix, we now are being
proactive. For each possible state of the Markov chain, we make a decision about which
one of several alternative actions should be taken in that state. The action chosen affects
the transition probabilities as well as both the immediate costs (or rewards) and subse-
quent costs (or rewards) from operating the system. We want to choose the optimal ac-
tions for the respective states when considering both immediate and subsequent costs. The
decision process for doing this is referred to as a Markov decision process.

The first section gives a prototype example of an application of a Markov decision
process. Section 21.2 formulates the basic model for these processes. The next three sec-
tions describe how to solve them.

A manufacturer has one key machine at the core of one of its production processes. Be-
cause of heavy use, the machine deteriorates rapidly in both quality and output. There-
fore, at the end of each week, a thorough inspection is done that results in classifying the
condition of the machine into one of four possible states:

21.1 A PROTOTYPE EXAMPLE



After historical data on these inspection results are gathered, statistical analysis is
done on how the state of the machine evolves from month to month. The following ma-
trix shows the relative frequency (probability) of each possible transition from the state
in one month (a row of the matrix) to the state in the following month (a column of the
matrix).
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State Condition

0 Good as new
1 Operable—minor deterioration
2 Operable—major deterioration
3 Inoperable—output of unacceptable quality

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 0 0 0 1

In addition, statistical analysis has found that these transition probabilities are unaffected
by also considering what the states were in prior months. This “lack-of-memory property”
is the Markovian property described in Sec. 16.2. Therefore, for the random variable Xt,
which is the state of the machine at the end of month t, it has been concluded that the
stochastic process {Xt, t � 0, 1, 2, . . .} is a discrete time Markov chain whose (one-step)
transition matrix is just the above matrix.

As the last entry in this transition matrix indicates, once the machine becomes inop-
erable (enters state 3), it remains inoperable. In other words, state 3 is an absorbing state.
Leaving the machine in this state would be intolerable, since this would shut down the
production process, so the machine must be replaced. (Repair is not feasible in this state.)
The new machine then will start off in state 0.

The replacement process takes 1 week to complete so that production is lost for this
period. The cost of the lost production (lost profit) is $2,000, and the cost of replacing
the machine is $4,000, so the total cost incurred whenever the current machine enters state
3 is $6,000.

Even before the machine reaches state 3, costs may be incurred from the production
of defective items. The expected costs per week from this source are as follows:

State Expected Cost Due to Defective Items, $

0 0
1 1,000
2 3,000



We now have mentioned all the relevant costs associated with one particular mainte-
nance policy (replace the machine when it becomes inoperable but do no maintenance
otherwise). Under this policy, the evolution of the state of the system (the succession of
machines) still is a Markov chain, but now with the following transition matrix:
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State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

To evaluate this maintenance policy, we should consider both the immediate costs in-
curred over the coming week ( just described) and the subsequent costs that result from
having the system evolve in this way. As introduced in Sec. 16.5, one such widely used
measure of performance for Markov chains is the (long-run) expected average cost per
unit time.1

To calculate this measure, we first derive the steady-state probabilities �0, �1, �2,
and �3 for this Markov chain by solving the following steady-state equations:

�0 � �3,

�1 � �
7
8

��0 � �
3
4

��1,

�2 � �
1
1
6
��0 � �

1
8

��1 � �
1
2

��2,

�3 � �
1
1
6
��0 � �

1
8

��1 � �
1
2

��2,

1 � �0 � �1 � �2 � �3.

The simultaneous solution is

�0 � �
1
2
3
�, �1 � �

1
7
3
�, �2 � �

1
2
3
�, �3 � �

1
2
3
�.

Hence, the (long-run) expected average cost per week for this maintenance policy is

0�0 � 1,000�1 � 3,000�2 � 6,000�3 � �
25

1
,0
3
00
� � $1,923.08.

However, there also are other maintenance policies that should be considered and com-
pared with this one. For example, perhaps the machine should be replaced before it reaches

1The term long-run indicates that the average should be interpreted as being taken over an extremely long time
so that the effect of the initial state disappears. As time goes to infinity, Sec. 16.5 discusses the fact that the ac-
tual average cost per unit time essentially always converges to the expected average cost per unit time.



state 3. Another alternative is to overhaul the machine at a cost of $2,000. This option is
not feasible in state 3 and does not improve the machine while in state 0 or 1, so it is of
interest only in state 2. In this state, an overhaul would return the machine to state 1. A
week is required, so another consequence is $2,000 in lost profit from lost production.

In summary, the possible decisions after each inspection are as follows:
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Decision Action Relevant States

1 Do nothing 0, 1, 2
2 Overhaul (return system to state 1) 2
3 Replace (return system to state 0) 1, 2, 3

TABLE 21.1 Cost data for the prototype example

Expected Cost Cost (Lost Total
Due to Producing Maintenance Profit) of Lost Cost per

Decision State Defective Items, $ Cost, $ Production, $ Week, $

1. Do nothing 0 0 0 0 0
1 1,000 0 0 1,000
2 3,000 0 0 3,000

2. Overhaul 2 0 2,000 2,000 4,000
3. Replace 1, 2, 3 0 4,000 2,000 6,000

For easy reference, Table 21.1 also summarizes the relevant costs for each decision for
each state where that decision could be of interest.

What is the optimal maintenance policy? We will be addressing this question to il-
lustrate the material in the next four sections.

The model for the Markov decision processes considered in this chapter can be summa-
rized as follows.

1. The state i of a discrete time Markov chain is observed after each transition (i � 0,
1, . . . , M).

2. After each observation, a decision (action) k is chosen from a set of K possible deci-
sions (k � 1, 2, . . . , K ). (Some of the K decisions may not be relevant for some of
the states.)

3. If decision di � k is made in state i, an immediate cost is incurred that has an expected
value Cik.

4. The decision di � k in state i determines what the transition probabilities1 will be for
the next transition from state i. Denote these transition probabilities by pij(k), for j � 0,
1, . . . , M.

21.2 A MODEL FOR MARKOV DECISION PROCESSES

1The solution procedures given in the next two sections also assume that the resulting transition matrix is irre-
ducible.



5. A specification of the decisions for the respective states (d0, d1, . . . , dM) prescribes a
policy for the Markov decision process.

6. The objective is to find an optimal policy according to some cost criterion which con-
siders both immediate costs and subsequent costs that result from the future evolution
of the process. One common criterion is to minimize the (long-run) expected average
cost per unit time. (An alternative criterion is considered in Sec. 21.5.)

To relate this general description to the prototype example presented in Sec. 21.1, re-
call that the Markov chain being observed there represents the state (condition) of a par-
ticular machine. After each inspection of the machine, a choice is made between three
possible decisions (do nothing, overhaul, or replace). The resulting immediate expected
cost is shown in the rightmost column of Table 21.1 for each relevant combination of state
and decision. Section 21.1 analyzed one particular policy (d0, d1, d2, d3) � (1, 1, 1, 3),
where decision 1 (do nothing) is made in states 0, 1, and 2 and decision 3 (replace) is
made in state 3. The resulting transition probabilities are shown in the last transition ma-
trix given in Sec. 21.1.

Our general model qualifies to be a Markov decision process because it possesses the
Markovian property that characterizes any Markov process. In particular, given the cur-
rent state and decision, any probabilistic statement about the future of the process is com-
pletely unaffected by providing any information about the history of the process. This
property holds here since (1) we are dealing with a Markov chain, (2) the new transition
probabilities depend on only the current state and decision, and (3) the immediate ex-
pected cost also depends on only the current state and decision.

Our description of a policy implies two convenient (but unnecessary) properties that
we will assume throughout the chapter (with one exception). One property is that a pol-
icy is stationary; i.e., whenever the system is in state i, the rule for making the decision
always is the same regardless of the value of the current time t. The second property is
that a policy is deterministic; i.e., whenever the system is in state i, the rule for making
the decision definitely chooses one particular decision. (Because of the nature of the al-
gorithm involved, the next section considers randomized policies instead, where a proba-
bility distribution is used for the decision to be made.)

Using this general framework, we now return to the prototype example and find the
optimal policy by enumerating and comparing all the relevant policies. In doing this, we
will let R denote a specific policy and di(R) denote the corresponding decision to be made
in state i.

Solving the Prototype Example by Exhaustive Enumeration

The relevant policies for the prototype example are these:
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Policy Verbal Description d0(R) d1(R) d2(R) d3(R)

Ra Replace in state 3 1 1 1 3
Rb Replace in state 3, overhaul in state 2 1 1 2 3
Rc Replace in states 2 and 3 1 1 3 3
Rd Replace in states 1, 2, and 3 1 3 3 3



Each policy results in a different transition matrix, as shown below.
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From the rightmost column of Table 21.1, the values of Cik are as follows:

Ra

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

Rb

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 1 0 0
3 1 0 0 0

Rc

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 1 0 0 0
3 1 0 0 0

Rd

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 1 0 0 0
2 1 0 0 0
3 1 0 0 0

Decision Cik (in Thousands of Dollars)

State 1 2 3

0 0 — —
1 1 — 6
2 3 4 6
3 — — 6

As indicated in Sec. 16.5, the (long-run) expected average cost per unit time E(C) then
can be calculated from the expression

E(C ) � �
M

i�0
Cik�i,

where k � di(R) for each i and (�0, �1, . . . , �M) represents the steady-state distribution
of the state of the system under the policy R being evaluated. After (�0, �1, . . . , �M) are



Thus, the optimal policy is Rb; that is, replace the machine when it is found to be in
state 3, and overhaul the machine when it is found to be in state 2. The resulting (long-
run) expected average cost per week is $1,667.

Using exhaustive enumeration to find the optimal policy is appropriate for this tiny
example, where there are only four relevant policies. However, many applications have so
many policies that this approach would be completely infeasible. For such cases, algo-
rithms that can efficiently find an optimal policy are needed. The next three sections con-
sider such algorithms.
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� Minimum

Policy (�0, �1, �2, �3) E(C), in Thousands of Dollars

Ra ��
1
2
3
�, �

1
7
3
�, �

1
2
3
�, �

1
2
3
�� �

1
1
3
�[2(0) � 7(1) � 2(3) � 2(6)] � �

2
1

5
3
� � $1,923

Rb ��
2
2
1
�, �

5
7

�, �
2
2
1
�, �

2
2
1
�� �

2
1
1
�[2(0) � 15(1) � 2(4) � 2(6)] � �

3
2

5
1
� � $1,667

Rc ��
1
2
1
�, �

1
7
1
�, �

1
1
1
�, �

1
1
1
�� �

1
1
1
�[2(0) � 7(1) � 1(6) � 1(6)] � �

1
1

9
1
� � $1,727

Rd ��
1
2

�, �
1
7
6
�, �

3
1
2
�, �

3
1
2
�� �

3
1
2
�[16(0) � 14(6) � 1(6) � 1(6)] � �

9
3

6
2
� � $3,000

Section 21.2 described the main kind of policy (called a stationary, deterministic policy)
that is used by Markov decision processes. We saw that any such policy R can be viewed
as a rule that prescribes decision di(R) whenever the system is in state i, for each i � 0,
1, . . . , M. Thus, R is characterized by the values

{d0(R), d1(R), . . . , dM(R)}.

Equivalently, R can be characterized by assigning values Dik � 0 or 1 in the matrix

Decision k
1 2 ��� K

State ,

where each Dik (i � 0, 1, . . . , M and k � 1, 2, . . . , K ) is defined as

Dik � � if decision k is to be made in state i
otherwise.

1
0








D0K

D1K

DMK

���

���

���

D02

D12

DM2

D01

D11

DM1








0

1

�

M
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solved for under each of the four policies (as can be done with your OR Courseware), the
calculation of E(C ) is as summarized here:

������������������������������



Therefore, each row in the matrix must contain a single 1 with the rest of the elements
0s. For example, the optimal policy Rb for the prototype example is characterized by the
matrix

Decision k
1 2 3

State ;

i.e., do nothing (decision 1) when the machine is in state 0 or 1, overhaul (decision 2) in
state 2, and replace the machine (decision 3) when it is in state 3.

Randomized Policies

Introducing Dik provides motivation for a linear programming formulation. It is hoped
that the expected cost of a policy can be expressed as a linear function of Dik or a related
variable, subject to linear constraints. Unfortunately, the Dik values are integers (0 or 1),
and continuous variables are required for a linear programming formulation. This re-
quirement can be handled by expanding the interpretation of a policy. The previous def-
inition calls for making the same decision every time the system is in state i. The new in-
terpretation of a policy will call for determining a probability distribution for the decision
to be made when the system is in state i.

With this new interpretation, the Dik now need to be redefined as

Dik � P{decision � kstate � i}.

In other words, given that the system is in state i, variable Dik is the probability of choos-
ing decision k as the decision to be made. Therefore, (Di1, Di2, . . . , DiK) is the proba-
bility distribution for the decision to be made in state i.

This kind of policy using probability distributions is called a randomized policy,
whereas the policy calling for Dik � 0 or 1 is a deterministic policy. Randomized policies
can again be characterized by the matrix

Decision k
1 2 ��� K

State ,

where each row sums to 1, and now

0 � Dik � 1.








D0K

D1K

DMK

���

���

���

D02

D12

DM2

D01

D11

DM1








0

1

�

M








0

0

0

1

0

0

1

0

1

1

0

0








0

1

2

3
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To illustrate, consider a randomized policy for the prototype example given by the
matrix

Decision k
1 2 3

State .

This policy calls for always making decision 1 (do nothing) when the machine is in state
0. If it is found to be in state 1, it is left as is with probability �

1
2

� and replaced with prob-
ability �

1
2

�, so a coin can be flipped to make the choice. If it is found to be in state 2, it is
left as is with probability �

1
4

�, overhauled with probability �
1
4

�, and replaced with probability
�
1
2

�. Presumably, a random device with these probabilities (possibly a table of random num-
bers) can be used to make the actual decision. Finally, if the machine is found to be in
state 3, it always is overhauled.

By allowing randomized policies, so that the Dik are continuous variables instead of
integer variables, it now is possible to formulate a linear programming model for finding
an optimal policy.

A Linear Programming Formulation

The convenient decision variables (denoted here by yik) for a linear programming model
are defined as follows. For each i � 0, 1, . . . , M and k � 1, 2, . . . , K, let yik be the steady-
state unconditional probability that the system is in state i and decision k is made; i.e.,

yik � P{state � i and decision � k}.

Each yik is closely related to the corresponding Dik since, from the rules of conditional
probability,

yik � �iDik,

where �i is the steady-state probability that the Markov chain is in state i. Furthermore,

�i � �
K

k�1
yik,

so that

Dik � �
y
�

ik

i
� � .

yik�

�
K

k�1
yik








0
�
1
2

�

�
1
2

�

1

0

0
�
1
4

�

0

1
�
1
2

�

�
1
4

�

0








0

1

2

3

21.3 LINEAR PROGRAMMING AND OPTIMAL POLICIES 1061



There exist several constraints on yik:

1. �
M

i�1
�i � 1 so that �

M

i�0
�
K

k�1
yik � 1.

2. From results on steady-state probabilities (see Sec. 16.5),1

�j � �
M

i�0
�ipij

so that

�
K

k�1
yjk � �

M

i�0
�
K

k�1
yikpij(k), for j � 0, 1, . . . , M.

3. yik � 0, for i � 0, 1, . . . , M and k � 1, 2, . . . , K.

The long-run expected average cost per unit time is given by

E(C ) � �
M

i�0
�
K

k�1
�iCikDik � �

M

i�0
�
K

k�1
Cikyik.

Hence, the linear programming model is to choose the yik so as to

Minimize Z � �
M

i�0
�
K

k�1
Cikyik,

subject to the constraints

(1) �
M

i�0
�
K

k�1
yik � 1.

(2) �
K

k�1
yjk 	 �

M

i�0
�
K

k�1
yikpij(k) � 0, for j � 0, 1, . . . , M.

(3) yik � 0, for i � 0, 1, . . . , M; k � 1, 2, . . . , K.

Thus, this model has M � 2 functional constraints and K(M � 1) decision variables. [Ac-
tually, (2) provides one redundant constraint, so any one of these M � 1 constraints can
be deleted.]

Assuming that the model is not too huge, it can be solved by the simplex method.
Once the yik values are obtained, each Dik is found from

Dik � .

The optimal solution obtained by the simplex method has some interesting proper-
ties. It will contain M � 1 basic variables yik � 0. It can be shown that yik 
 0 for at least

yik�

�
K

k�1
yik
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1The argument k is introduced in pij(k) to indicate that the appropriate transition probability depends upon the
decision k.



one k � 1, 2, . . . , K, for each i � 0, 1, . . . , M. Therefore, it follows that yik 
 0 for only
one k for each i � 0, 1, . . . , M. Consequently, each Dik � 0 or 1.

The key conclusion is that the optimal policy found by the simplex method is deter-
ministic rather than randomized. Thus, allowing policies to be randomized does not help at
all in improving the final policy. However, it serves an extremely useful role in this formu-
lation by converting integer variables (the Dik) to continuous variables so that linear pro-
gramming (LP) can be used. (The analogy in integer programming is to use the LP relax-
ation so that the simplex method can be applied and then to have the integer solutions property
hold so that the optimal solution for the LP relaxation turns out to be integer anyway.)

Solving the Prototype Example by Linear Programming

Refer to the prototype example of Sec. 21.1. The first two columns of Table 21.1 give the
relevant combinations of states and decisions. Therefore, the decision variables that need
to be included in the model are y01, y11, y13, y21, y22, y23, and y33. (The general expres-
sions given above for the model include yik for irrelevant combinations of states and de-
cisions here, so these yik � 0 in an optimal solution, and they might as well be deleted at
the outset.) The rightmost column of Table 21.1 provides the coefficients of these vari-
ables in the objective function. The transition probabilities pij(k) for each relevant com-
bination of state i and decision k also are spelled out in Sec. 21.1.

The resulting linear programming model is

Minimize Z � 1,000y11 � 6,000y13 � 3,000y21 � 4,000y22 � 6,000y23

� 6,000y33,

subject to

y01 � y11 � y13 � y21 � y22 � y23 � y33 � 1
y01 	 (y13 � y23 � y33) � 0

y11 � y13 	 ��
7
8

�y01 � �
3
4

�y11 � y22� � 0

y21 � y22 � y23 	 ��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � 0

y33 	 ��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � 0

and

all yik � 0.

Applying the simplex method, we obtain the optimal solution

y01 � �
2
2
1
�, (y11, y13) � ��

5
7

�, 0�, (y21, y22, y23) � �0, �
2
2
1
�, 0�, y33 � �

2
2
1
�,

so

D01 � 1, (D11, D13) � (1, 0), (D21, D22, D23) � (0, 1, 0), D33 � 1.

This policy calls for leaving the machine as is (decision 1) when it is in state 0 or 1, over-
hauling it (decision 2) when it is in state 2, and replacing it (decision 3) when it is in state
3. This is the same optimal policy found by exhaustive enumeration at the end of Sec. 21.2.
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You now have seen two methods for deriving an optimal policy for a Markov decision
process: exhaustive enumeration and linear programming. Exhaustive enumeration is use-
ful because it is both quick and straightforward for very small problems. Linear pro-
gramming can be used to solve vastly larger problems, and software packages for the sim-
plex method are very widely available.

We now present a third popular method, namely, a policy improvement algorithm.
The key advantage of this method is that it tends to be very efficient, because it usually
reaches an optimal policy in a relatively small number of iterations (far fewer than for the
simplex method with a linear programming formulation).

By following the model of Sec. 21.2 and as a joint result of the current state i of the
system and the decision di(R) � k when operating under policy R, two things occur. An
(expected) cost Cik is incurred that depends upon only the observed state of the system
and the decision made. The system moves to state j at the next observed time period, with
transition probability given by pij(k). If, in fact, state j influences the cost that has been
incurred, then Cik is calculated as follows. Denote by qij(k) the (expected) cost incurred
when the system is in state i and decision k is made and then it evolves to state j at the
next observed time period. Then

Cik � �
M

j�0
qij(k)pij(k).

Preliminaries

Referring to the description and notation for Markov decision processes given at the be-
ginning of Sec. 21.2, we can show that, for any given policy R, there exist values g(R),
v0(R), v1(R), . . . , vM(R) that satisfy

g(R) � vi(R) � Cik � �
M

j�0
pij(k) vj(R), for i � 0, 1, 2, . . . , M.

We now shall give a heuristic justification of these relationships and an interpretation for
these values.

Denote by vi
n(R) the total expected cost of a system starting in state i (beginning the

first observed time period) and evolving for n time periods. Then vi
n(R) has two compo-

nents: Cik, the cost incurred during the first observed time period, and �
M

j�0
pij(k) vj

n	1(R),

the total expected cost of the system evolving over the remaining n 	 1 time periods. This
gives the recursive equation

vi
n(R) � Cik � �

M

j�0
pij(k) vj

n	1(R), for i � 0, 1, 2, . . . , M,

where vi
1(R) � Cik for all i.
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It will be useful to explore the behavior of vi
n(R) as n grows large. Recall that the (long-

run) expected average cost per unit time following any policy R can be expressed as

g(R) � �
M

i�0
�iCik,

which is independent of the starting state i. Hence, vi
n(R) behaves approximately as n g(R)

for large n. In fact, if we neglect small fluctuations, vi
n(R) can be expressed as the sum of

two components

vi
n(R) � n g(R) � vi(R),

where the first component is independent of the initial state and the second is dependent
upon the initial state. Thus, vi(R) can be interpreted as the effect on the total expected cost
due to starting in state i. Consequently,

vi
n(R) 	 vj

n(R) � vi(R) 	 vj(R),

so that vi(R) 	 vj(R) is a measure of the effect of starting in state i rather than state j.
Letting n grow large, we now can substitute vi

n(R) � n g(R) � vi(R) and vj
n	1(R) �

(n 	 1)g(R) � vj(R) into the recursive equation. This leads to the system of equations
given in the opening paragraph of this subsection.

Note that this system has M � 1 equations with M � 2 unknowns, so that one of these
variables may be chosen arbitrarily. By convention, vM(R) will be chosen equal to zero.
Therefore, by solving the system of linear equations, we can obtain g(R), the (long-run)
expected average cost per unit time when policy R is followed. In principle, all policies
can be enumerated and that policy which minimizes g(R) can be found. However, even
for a moderate number of states and decisions, this technique is cumbersome. Fortunately,
there exists an algorithm that can be used to evaluate policies and find the optimal one
without complete enumeration, as described next.

The Policy Improvement Algorithm

The algorithm begins by choosing an arbitrary policy R1. It then solves the system of
equations to find the values of g(R1), v0(R), v1(R), . . . , vM	1(R) [with vM(R) � 0]. This
step is called value determination. A better policy, denoted by R2, is then constructed.
This step is called policy improvement. These two steps constitute an iteration of the al-
gorithm. Using the new policy R2, we perform another iteration. These iterations continue
until two successive iterations lead to identical policies, which signifies that the optimal
policy has been obtained. The details are outlined below.

Summary of the Policy Improvement Algorithm

Initialization: Choose an arbitrary initial trial policy R1. Set n � 1.
Iteration n:
Step 1: Value determination: For policy Rn, use pij(k), Cik, and vM(Rn) � 0 to
solve the system of M � 1 equations

g(Rn) � Cik � �
M

j�0
pij(k) vj(Rn) 	 vi(Rn), for i � 0, 1, . . . , M,

21.4 POLICY IMPROVEMENT ALGORITHM FOR FINDING OPTIMAL POLICIES 1065



for all M � 1 unknown values of g(Rn), v0(Rn), v1(Rn), . . . , vM	1(Rn).
Step 2: Policy improvement: Using the current values of vi(Rn) computed for pol-
icy Rn, find the alternative policy Rn�1 such that, for each state i, di(Rn�1) � k
is the decision that minimizes

Cik � �
M

j�0
pij(k) vj(Rn) 	 vi(Rn)

i.e., for each state i,

Minimize [Cik � �
M

j�0
pij(k) vj(Rn) 	 vi(Rn)],

k�1, 2, . . . , k

and then set di(Rn�1) equal to the minimizing value of k. This procedure defines
a new policy Rn�1.
Optimality test: The current policy Rn�1 is optimal if this policy is identical to
policy Rn. If it is, stop. Otherwise, reset n � n � 1 and perform another iteration.

Two key properties of this algorithm are

1. g(Rn�1) � g(Rn), for n � 1, 2, . . . .
2. The algorithm terminates with an optimal policy in a finite number of itera-

tions.1

Solving the Prototype Example by 
the Policy Improvement Algorithm

Referring to the prototype example presented in Sec. 21.1, we outline the application of
the algorithm next.

Initialization. For the initial trial policy R1, we arbitrarily choose the policy that calls
for replacement of the machine (decision 3) when it is found to be in state 3, but doing
nothing (decision 1) in other states. This policy, its transition matrix, and its costs are sum-
marized below.
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Transition matrix

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

Policy R1

State Decision

0 1
1 1
2 1
3 3

Costs

State Cik

0 0
1 1,000
2 3,000
3 6,000

1This termination is guaranteed under the assumptions of the model given in Sec. 21.2, including particularly
the (implicit) assumptions of a finite number of states (M � 1) and a finite number of decisions (K), but not
necessarily for more general models. See R. Howard, Dynamic Programming and Markov Processes, M.I.T.
Press, Cambridge, MA, 1960. Also see pp. 1291–1293 in A. F. Veinott, Jr., “On Finding Optimal Policies in Dis-
crete Dynamic Programming with No Discounting,” Annals of Mathematical Statistics, 37: 1284–1294, 1966.



Iteration 1. With this policy, the value determination step requires solving the follow-
ing four equations simultaneously for g(R1), v0(R1), v1(R1), and v2(R1) [with v3(R1) � 0].

g(R1) � � �
7
8

�v1(R1) � �
1
1
6
�v2(R1) 	 v0(R1).

g(R1) � 1,000 � �
3
4

�v1(R1) � �
1
8

�v2(R1) 	 v1(R1).

g(R1) � 3,000 � �
1
2

�v2(R1) 	 v2(R1).

g(R1) � 6,000 � v0(R1).

The simultaneous solution is

g(R1) � �
25

1
,0
3
00
� � 1,923

v0(R1) � 	�
53

1
,0
3
00
� � 	4,077

v1(R1) � 	�
34

1
,0
3
00
� � 	2,615

v2(R1) � �
28

1
,0
3
00
� � 2,154.

Step 2 (policy improvement) can now be applied. We want to find an improved pol-
icy R2 such that decision k in state i minimizes the corresponding expression below.

State 0: C0k 	 p00(k)(4,077) 	 p01(k)(2,615) � p02(k)(2,154) � 4,077
State 1: C1k 	 p10(k)(4,077) 	 p11(k)(2,615) � p12(k)(2,154) � 2,615
State 2: C2k 	 p20(k)(4,077) 	 p21(k)(2,615) � p22(k)(2,154) 	 2,154
State 3: C3k 	 p30(k)(4,077) 	 p31(k)(2,615) � p32(k)(2,154).

Actually, in state 0, the only decision allowed is decision 1 (do nothing), so no cal-
culations are needed. Similarly, we know that decision 3 (replace) must be made in state
3. Thus, only states 1 and 2 require calculation of the values of these expressions for al-
ternative decisions.

For state 1, the possible decisions are 1 and 3. For each one, we show below the cor-
responding C1k, the p1j(k), and the resulting value of the expression.

21.4 POLICY IMPROVEMENT ALGORITHM FOR FINDING OPTIMAL POLICIES 1067

� Minimum

State 1

Value of
Decision C1k p10(k) p11(k) p12(k) p13(k) Expression

1 1,000 0 �
3
4

� �
1
8

� �
1
8

� 1,923

3 6,000 1 0 0 0 4,538

Since decision 1 minimizes the expression, it is chosen as the decision to be made in state
1 for policy R2 ( just as for policy R1).



The corresponding results for state 2 are shown below for its three possible decisions.
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Therefore, decision 2 is chosen as the decision to be made in state 2 for policy R2. Note
that this is a change from policy R1.

We summarize our new policy, its transition matrix, and its costs below.

� Minimum

State 2

Value of
Decision C2k p20(k) p21(k) p22(k) p23(k) Expression

1 3,000 0 0 �
1
2

� �
1
2

� 1,923

2 4,000 0 1 0 0 	769
3 6,000 1 0 0 0 	231

Since this policy is not identical to policy R1, the optimality test says to perform another
iteration.

Iteration 2. For step 1 (value determination), the equations to be solved for this pol-
icy are shown below.

g(R2) � � �
7
8

�v1(R2) � �
1
1
6
�v2(R2) 	 v0(R2).

g(R2) � 1,000 � �
3
4

�v1(R2) � �
1
8

�v2(R2) 	 v1(R2).

g(R2) � 4,000 � v1(R2) 	 v2(R2).
g(R2) � 6,000 � v0(R2).

The simultaneous solution is

g(R2) � �
5,0

3
00
� � 1,667

v0(R2) � 	�
13,

3
000
� � 	4,333

v1(R2) � 	3,000

v2(R2) � 	�
2,0

3
00
� � 	667.

Costs

State Cik

0 0
1 1,000
2 4,000
3 6,000

Transition matrix

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 1 0 0
3 1 0 0 0

Policy R2

State Decision

0 1
1 1
2 2
3 3



Step 2 (policy improvement) can now be applied. For the two states with more than
one possible decision, the expressions to be minimized are

State 1: C1k 	 p10(k)(4,333) 	 p11(k)(3,000) 	 p12(k)(667) � 3,000

State 2: C2k 	 p20(k)(4,333) 	 p21(k)(3,000) 	 p22(k)(667) � 667.

The first iteration provides the necessary data (the transition probabilities and Cik) re-
quired for determining the new policy, except for the values of each of these expressions
for each of the possible decisions. These values are
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Since decision 1 minimizes the expression for state 1 and decision 2 minimizes the ex-
pression for state 2, our next trial policy R3 is

Note that policy R3 is identical to policy R2. Therefore, the optimality test indicates
that this policy is optimal, so the algorithm is finished.

Another example illustrating the application of this algorithm is included in your OR
Tutor. The OR Courseware also includes an interactive routine for efficiently learning and
applying the algorithm.

Decision Value for State 1 Value for State 2

1 1,667 3,333
2 — 1,667
3 4,667 2,334

Policy R3

State Decision

0 1
1 1
2 2
3 3

Throughout this chapter, we have measured policies on the basis of their (long-run) ex-
pected average cost per unit time. We now turn to an alternative measure of performance,
namely, the expected total discounted cost.

As first introduced in Sec. 19.2, this measure uses a discount factor �, where 
0 � � � 1. The discount factor � can be interpreted as equal to 1/(1 � i), where i is the
current interest rate per period. Thus, � is the present value of one unit of cost one pe-
riod in the future. Similarly, �m is the present value of one unit of cost m periods in the
future.

This discounted cost criterion becomes preferable to the average cost criterion when
the time periods for the Markov chain are sufficiently long that the time value of money
should be taken into account in adding costs in future periods to the cost in the current
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period. Another advantage is that the discounted cost criterion can readily be adapted to
dealing with a finite-period Markov decision process where the Markov chain will ter-
minate after a certain number of periods.

Both the policy improvement technique and the linear programming approach still
can be applied here with relatively minor adjustments from the average cost case, as we
describe next. Then we will present another technique, called the method of successive
approximations, for quickly approximating an optimal policy.

A Policy Improvement Algorithm

To derive the expressions needed for the value determination and policy improvement
steps of the algorithm, we now adopt the viewpoint of probabilistic dynamic program-
ming (as described in Sec. 11.4). In particular, for each state i (i � 0, 1, . . . , M) of a
Markov decision process operating under policy R, let Vi

n(R) be the expected total dis-
counted cost when the process starts in state i (beginning the first observed time period)
and evolves for n time periods. Then Vi

n(R) has two components: Cik, the cost incurred 

during the first observed time period, and � �
M

j�0
pij(k)Vj

n	1(R), the expected total dis-

counted cost of the process evolving over the remaining n 	 1 time periods. For each 
i � 0, 1, . . . , M, this yields the recursive equation

Vi
n(R) � Cik � � �

M

j�0
pij(k)Vj

n	1(R),

with Vi
1(R) � Cik, which closely resembles the recursive relationships of probabilistic dy-

namic programming found in Sec. 11.4.
As n approaches infinity, this recursive equation converges to

Vi(R) � Cik � � �
M

j�0
pij(k)Vj(R), for i � 0, 1, . . . , M,

where Vi(R) can now be interpreted as the expected total discounted cost when the process
starts in state i and continues indefinitely. There are M � 1 equations and M � 1 un-
knowns, so the simultaneous solution of this system of equations yields the Vi(R).

To illustrate, consider again the prototype example of Sec. 21.1. Under the average
cost criterion, we found in Secs. 21.2, 21.3, and 21.4 that the optimal policy is to do noth-
ing in states 0 and 1, overhaul in state 2, and replace in state 3. Under the discounted cost
criterion, with � � 0.9, this same policy gives the following system of equations:

V0(R) � 1,000 � 0.9� �
7
8

�V1(R) � �
1
1
6
�V2(R) � �

1
1
6
�V3(R)�

V1(R) � 1,000 � 0.9� �
3
4

�V1(R) � �
1
8

�V2(R) � �
1
8

�V3(R)�
V2(R) � 4,000 � 0.9[ V1(R)]
V3(R) � 6,000 � 0.9[V0(R)].
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The simultaneous solution is

V0(R) � 14,949
V1(R) � 16,262
V2(R) � 18,636
V3(R) � 19,454.

Thus, assuming that the system starts in state 0, the expected total discounted cost is
$14,949.

This system of equations provides the expressions needed for a policy improvement
algorithm. After summarizing this algorithm in general terms, we shall use it to check
whether this particular policy still is optimal under the discounted cost criterion.

Summary of the Policy Improvement Algorithm (Discounted Cost Criterion).

Initialization: Choose an arbitrary initial trial policy R1. Set n � 1.
Iteration n:
Step 1: Value determination: For policy Rn, use pij(k) and Cik to solve the sys-
tem of M � 1 equations

Vi(Rn) � Cik � � �
M

j�0
pij(k)Vj(Rn), for i � 0, 1, . . . , M,

for all M � 1 unknown values of V0(Rn), V1(Rn), . . . , VM(Rn).
Step 2: Policy improvement: Using the current values of the Vi(Rn), find the al-
ternative policy Rn�1 such that, for each state i, di(Rn�1) � k is the decision that
minimizes

Cik � � �
M

j�0
pij(k)Vj(Rn)

i.e., for each state i,

Minimize �Cik � � �
M

j�0
pij(k)Vj(Rn)�,

k�1, 2, . . . , K

and then set di(Rn�1) equal to the minimizing value of k. This procedure defines
a new policy Rn�1.
Optimality test: The current policy Rn�1 is optimal if this policy is identical to
policy Rn. If it is, stop. Otherwise, reset n � n � 1 and perform another iteration.

Three key properties of this algorithm are as follows:

1. Vi(Rn�1) � Vi(Rn), for i � 0, 1, . . . , M and n � 1, 2, . . . .
2. The algorithm terminates with an optimal policy in a finite number of iterations.
3. The algorithm is valid without the assumption (used for the average cost case)

that the Markov chain associated with every transition matrix is irreducible.

Your OR Courseware includes an interactive routine for applying this algorithm.
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Solving the Prototype Example by This Policy Improvement Algorithm. We
now pick up the prototype example where we left it before summarizing the algorithm.

We already have selected the optimal policy under the average cost criterion to be
our initial trial policy R1. This policy, its transition matrix, and its costs are summarized
below.
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We also have already done step 1 (value determination) of iteration 1. This transi-
tion matrix and these costs led to the system of equations used to find V0(R1) � 14,949,
V1(R1) � 16,262, V2(R1) � 18,636, and V3(R1) � 19,454.

To start step 2 (policy improvement), we only need to construct the expression to be
minimized for the two states (1 and 2) with a choice of decisions.

State 1: C1k � 0.9[ p10(k)(14,949) � p11(k)(16,262) � p12(k)(18,636)
� p13(k)(19,454)]

State 2: C2k � 0.9[ p20(k)(14,949) � p21(k)(16,262) � p22(k)(18,636)
� p23(k)(19,454)].

For each of these states and their possible decisions, we show below the corresponding
Cik, the pij(k), and the resulting value of the expression.

Policy R1

State Decision

0 1
1 1
2 2
3 3

Transition matrix

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 1 0 0
3 1 0 0 0

Costs

State Cik

0 0
1 1,000
2 4,000
3 6,000

� Minimum

� Minimum

State 1

Decision C1k p10(k) p11(k) p12(k) p13(k) Value of Expression

1 1,000 0 �
3
4

� �
1
8

� �
1
8

� 16,262

3 6,000 1 0 0 0 19,454

State 2

Decision C2k p20(k) p21(k) p22(k) p23(k) Value of Expression

1 3,000 0 0 �
1
2

� �
1
2

� 20,140

2 4,000 0 1 0 0 18,636
3 6,000 1 0 0 0 19,454



Since decision 1 minimizes the expression for state 1 and decision 2 minimizes the ex-
pression for state 2, our next trial policy (R2) is as follows:
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Since this policy is identical to policy R1, the optimality test indicates that this pol-
icy is optimal. Thus, the optimal policy under the average cost criterion also is optimal
under the discounted cost criterion in this case. (This often occurs, but not always.)

Linear Programming Formulation

The linear programming formulation for the discounted cost case is similar to that for the
average cost case given in Sec. 21.3. However, we no longer need the first constraint given
in Sec. 21.3; but the other functional constraints do need to include the discount factor �.
The other difference is that the model now contains constants j for j � 0, 1, . . . , M.
These constants must satisfy the conditions

�
M

j�0
j � 1, j 
 0 for j � 0, 1, . . . , M,

but otherwise they can be chosen arbitrarily without affecting the optimal policy obtained
from the model.

The resulting model is to choose the values of the continuous decision variables yik

so as to

Minimize Z � �
M

i�0
�
K

k�1
Cikyik,

subject to the constraints

(1) �
K

k�1
yjk 	 � �

M

i�0
�
K

k�1
yikpij(k) � j, for j � 0, 1, . . . , M,

(2) yik � 0, for i � 0, 1, . . . , M; k � 1, 2, . . . , K.

Once the simplex method is used to obtain an optimal solution for this model, the
corresponding optimal policy then is defined by

Dik � P{decision � k and state � i} � .
yik�

�
K

k�1
yik

Policy R2

State Decision

0 1
1 1
2 2
3 3



The yik now can be interpreted as the discounted expected time of being in state i and
making decision k, when the probability distribution of the initial state (when observa-
tions begin) is P{X0 � j} � j for j � 0, 1, . . . , M. In other words, if

zn
ik � P{at time n, state � i and decision � k},

then 

yik � z0
ik � �z1

ik � �2z2
ik � �3z3

ik � ���.

With the interpretation of the j as initial state probabilities (with each probability greater
than zero), Z can be interpreted as the corresponding expected total discounted cost. Thus,
the choice of j affects the optimal value of Z (but not the resulting optimal policy).

It again can be shown that the optimal policy obtained from solving the linear pro-
gramming model is deterministic; that is, Dik � 0 or 1. Furthermore, this technique is valid
without the assumption (used for the average cost case) that the Markov chain associated
with every transition matrix is irreducible.

Solving the Prototype Example by Linear Programming. The linear program-
ming model for the prototype example (with � � 0.9) is

Minimize Z � 1,000y11 � 6,000y13 � 3,000y21 � 4,000y22 � 6,000y23

� 6,000y33,

subject to

y01 	 0.9(y13 � y23 � y33) � �
1
4

�

y11 � y13 	 0.9��
7
8

�y01 � �
3
4

�y11 � y22� � �
1
4

�

y21 � y22 � y23 	 0.9��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � �
1
4

�

y33 	 0.9��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � �
1
4

�

and

all yik � 0,

where 0, 1, 2, and 3 are arbitrarily chosen to be �
1
4

�. By the simplex method, the opti-
mal solution is

y01 � 1.210, (y11, y13) � (6.656, 0), (y21, y22, y23) � (0, 1.067, 0),
y33 � 1.067,

so

D01 � 1, (D11, D13) � (1, 0), (D21, D22, D23) � (0, 1, 0), D33 � 1.

This optimal policy is the same as that obtained earlier in this section by the policy im-
provement algorithm.

The value of the objective function for the optimal solution is Z � 17,325. This value
is closely related to the values of the Vi(R) for this optimal policy that were obtained by
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the policy improvement algorithm. Recall that Vi(R) is interpreted as the expected total
discounted cost given that the system starts in state i, and we are interpreting i as the
probability of starting in state i. Because each i was chosen to equal �

1
4

�,

17,325 � �
1
4

�[V0(R) � V1(R) � V2(R) � V3(R)]

� �
1
4

�(14,949 � 16,262 � 18,636 � 19,454).

Finite-Period Markov Decision Processes and 
the Method of Successive Approximations

We now turn our attention to an approach, called the method of successive approxima-
tions, for quickly finding at least an approximation to an optimal policy.

We have assumed that the Markov decision process will be operating indefinitely, and
we have sought an optimal policy for such a process. The basic idea of the method of suc-
cessive approximations is to instead find an optimal policy for the decisions to make in
the first period when the process has only n time periods to go before termination, start-
ing with n � 1, then n � 2, then n � 3, and so on. As n grows large, the corresponding
optimal policies will converge to an optimal policy for the infinite-period problem of in-
terest. Thus, the policies obtained for n � 1, 2, 3, . . . provide successive approximations
that lead to the desired optimal policy.

The reason that this approach is attractive is that we already have a quick method of
finding an optimal policy when the process has only n periods to go, namely, probabilis-
tic dynamic programming as described in Sec. 11.4.

In particular, for i � 0, 1, . . . , M, let

Vi
n � expected total discounted cost of following an optimal policy, given that

process starts in state i and has only n periods to go.1

By the principle of optimality for dynamic programming (see Sec. 11.2), the Vi
n are ob-

tained from the recursive relationship

Vi
n � min

k �Cik � � �
M

j�0
pij(k)Vj

n	1	, for i � 0, 1, . . . , M.

The minimizing value of k provides the optimal decision to make in the first period when
the process starts in state i.

To get started, with n � 1, all the Vi
0 � 0 so that

Vi
1 � min

k
{Cik}, for i � 0, 1, . . . , M.

Although the method of successive approximations may not lead to an optimal pol-
icy for the infinite-period problem after only a few iterations, it has one distinct advan-
tage over the policy improvement and linear programming techniques. It never requires
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solving a system of simultaneous equations, so each iteration can be performed simply
and quickly.

Furthermore, if the Markov decision process actually does have just n periods to go,
n iterations of this method definitely will lead to an optimal policy. (For an n-period prob-
lem, it is permissible to set � � 1, that is, no discounting, in which case the objective is
to minimize the expected total cost over n periods.)

Your OR Courseware includes an interactive routine to help guide you to use this
method efficiently.

Solving the Prototype Example by the Method of Successive Approximations.
We again use � � 0.9. Refer to the rightmost column of Table 21.1 at the end of Sec. 21.1
for the values of Cik. Also note in the first two columns of this table that the only feasi-
ble decisions k for each state i are k � 1 for i � 0, k � 1 or 3 for i � 1, k � 1, 2, or 3 for
i � 2, and k � 3 for i � 3.

For the first iteration (n � 1), the value obtained for each Vi
1 is shown below, along

with the minimizing value of k (given in parentheses).

V0
1 � min {C0k} � 0 (k � 1)

k�1

V1
1 � min {C1k} � 1,000 (k � 1)

k�1,3

V2
1 � min {C2k} � 3,000 (k � 1)

k�1,2,3

V3
1 � min {C3k} � 6,000 (k � 3)

k�3

Thus, the first approximation calls for making decision 1 (do nothing) when the system is
in state 0, 1, or 2. When the system is in state 3, decision 3 (replace the machine) is made.

The second iteration leads to

V0
2 � 0 � 0.9��

7
8

�(1,000) � �
1
1
6
�(3,000) � �

1
1
6
�(6,000)� � 1,294 (k � 1).

V1
2 � min �1,000 � 0.9��

3
4

�(1,000) � �
1
8

�(3,000) � �
1
8

�(6,000)�,

6,000 � 0.9[1(0)]	 � 2,688 (k � 1).

V2
2 � min �3,000 � 0.9��

1
2

�(3,000) � �
1
2

�(6,000)�,

4,000 � 0.9[1(1,000)], 6,000 � 0.9[1(0)]	 � 4,900 (k � 2).

V3
2 � 6,000 � 0.9[1(0)] � 6,000 (k � 3).

where the min operator has been deleted from the first and fourth expressions because
only one alternative for the decision is available. Thus, the second approximation calls for
leaving the machine as is when it is in state 0 or 1, overhauling when it is in state 2, and
replacing the machine when it is in state 3. Note that this policy is the optimal one for
the infinite-period problem, as found earlier in this section by both the policy improve-
ment algorithm and linear programming. However, the Vi

2 (the expected total discounted
cost when starting in state i for the two-period problem) are not yet close to the Vi (the
corresponding cost for the infinite-period problem).
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The third iteration leads to

V0
3 � 0 � 0.9��

7
8

�(2,688) � �
1
1
6
�(4,900) � �

1
1
6
�(6,000)� � 2,730 (k � 1).

V1
3 � min �1,000 � 0.9��

3
4

�(2,688) � �
1
8

�(4,900) � �
1
8

�(6,000)�,

6,000 � 0.9[1(1,294)]	 � 4,041 (k � 1).

V2
3 � min �3,000 � 0.9��

1
2

�(4,900) � �
1
2

�(6,000)�,

4,000 � 0.9[1(2,688)], 6,000 � 0.9[1(1,294)]	 � 6,419 (k � 2).

V3
3 � 6,000 � 0.9[1(1,294)] � 7,165 (k � 3).

Again the optimal policy for the infinite-period problem is obtained, and the costs are get-
ting closer to those for that problem. This procedure can be continued, and V0

n, V1
n, V2

n,
and V3

n will converge to 14,949, 16,262, 18,636, and 19,454, respectively.
Note that termination of the method of successive approximations after the second it-

eration would have resulted in an optimal policy for the infinite-period problem, although
there is no way to know this fact without solving the problem by other methods.

As indicated earlier, the method of successive approximations definitely obtains an
optimal policy for an n-period problem after n iterations. For this example, the first, sec-
ond, and third iterations have identified the optimal immediate decision for each state if
the remaining number of periods is one, two, and three, respectively.
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A Demonstration Example in OR Tutor:

Policy Improvement Algorithm—Average Cost Case

Interactive Routines:

Enter Markov Decision Model
Interactive Policy Improvement Algorithm—Average Cost
Interactive Policy Improvement Algorithm—Discounted Cost
Interactive Method of Successive Approximations

Automatic Routines:

Enter Transition Matrix
Steady-State Probabilities

“Ch. 21—Markov Decision Proc” Files for Solving the Linear
Programming Formulations:

Excel File
LINGO/LINDO File
MPL/CPLEX File

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: We suggest that you use the corresponding interactive routine

listed above (the printout records your work).
A: The automatic routines listed above can be helpful.

PROBLEMS

C: Use the computer with any of the software options available to
you (or as instructed by your instructor) to solve your linear
programming formulation.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.



A (c) Use your OR Courseware to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

21.2-3. A soap company specializes in a luxury type of bath soap.
The sales of this soap fluctuate between two levels—low and
high—depending upon two factors: (1) whether they advertise and
(2) the advertising and marketing of new products by competitors.
The second factor is out of the company’s control, but it is trying
to determine what its own advertising policy should be. For ex-
ample, the marketing manager’s proposal is to advertise when sales
are low but not to advertise when sales are high (a particular pol-
icy). Advertising in any quarter of a year has primary impact on
sales in the following quarter. At the beginning of each quarter, the
needed information is available to forecast accurately whether sales
will be low or high that quarter and to decide whether to advertise
that quarter.

The cost of advertising is $1 million for each quarter of a year
in which it is done. When advertising is done during a quarter, the
probability of having high sales the next quarter is �

1
2

� or �
3
4

� depend-
ing upon whether the current quarter’s sales are low or high. These
probabilities go down to �

1
4

� or �
1
2

� when advertising is not done dur-
ing the current quarter. The company’s quarterly profits (exclud-
ing advertising costs) are $4 million when sales are high but only
$2 million when sales are low. Management now wants to deter-
mine the advertising policy that will maximize the company’s
(long-run) expected average net profit (profit minus advertising
costs) per quarter.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average net profit per period in terms of the un-
known steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

21.2-4. Every Saturday night a man plays poker at his home with
the same group of friends. If he provides refreshments for the group
(at an expected cost of $14) on any given Saturday night, the group
will begin the following Saturday night in a good mood with prob-
ability �

7
8

� and in a bad mood with probability �
1
8

�. However, if he fails
to provide refreshments, the group will begin the following Satur-
day night in a good mood with probability �

1
8

� and in a bad mood
with probability �

7
8

�, regardless of their mood this Saturday. Further-
more, if the group begins the night in a bad mood and then he fails
to provide refreshments, the group will gang up on him so that he
incurs expected poker losses of $75. Under other circumstances,

21.2-1.* During any period, a potential customer arrives at a cer-
tain facility with probability �

1
2

�. If there are already two people at
the facility (including the one being served), the potential customer
leaves the facility immediately and never returns. However, if there
is one person or less, he enters the facility and becomes an actual
customer. The manager of the facility has two types of service con-
figurations available. At the beginning of each period, a decision
must be made on which configuration to use. If she uses her “slow”
configuration at a cost of $3 and any customers are present during
the period, one customer will be served and leave the facility with
probability �

3
5

�. If she uses her “fast” configuration at a cost of $9
and any customers are present during the period, one customer will
be served and leave the facility with probability �

4
5

�. The probability
of more than one customer arriving or more than one customer be-
ing served in a period is zero. A profit of $50 is earned when a
customer is served.
(a) Formulate the problem of choosing the service configuration

period by period as a Markov decision process. Identify the
states and decisions. For each combination of state and deci-
sion, find the expected net immediate cost (subtracting any
profit from serving a customer) incurred during that period.

(b) Identify all the (stationary deterministic) policies. For each one,
find the transition matrix and write an expression for the (long-
run) expected average net cost per period in terms of the un-
known steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state probabil-
ities for each policy. Then evaluate the expression obtained in
part (b) to find the optimal policy by exhaustive enumeration.

21.2-2.* A student is concerned about her car and does not like
dents. When she drives to school, she has a choice of parking it on
the street in one space, parking it on the street and taking up two
spaces, or parking in the lot. If she parks on the street in one space,
her car gets dented with probability �

1
1
0
�. If she parks on the street

and takes two spaces, the probability of a dent is �
5
1
0
� and the prob-

ability of a $15 ticket is �
1
3
0
�. Parking in a lot costs $5, but the car

will not get dented. If her car gets dented, she can have it repaired,
in which case it is out of commission for 1 day and costs her $50
in fees and cab fares. She can also drive her car dented, but she
feels that the resulting loss of value and pride is equivalent to a
cost of $9 per school day. She wishes to determine the optimal pol-
icy for where to park and whether to repair the car when dented
in order to minimize her (long-run) expected average cost per
school day.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average cost per period in terms of the unknown
steady-state probabilities (�0, �1, . . . , �M).
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has profits (losses) of $10,000. If the market moves up (down)
2,000 points in a year, the Go-Go Fund has profits (losses) of
$50,000, while the Go-Slow Fund has profits (losses) of only
$20,000. If the market does not change, there is no profit or loss
for either fund. Ms. Fontanez wishes to determine her optimal in-
vestment policy in order to minimize her (long-run) expected av-
erage cost (loss minus profit) per year.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average cost per period in terms of the unknown
steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

21.2-7. Buck and Bill Bogus are twin brothers who work at a gas
station and have a counterfeiting business on the side. Each day a
decision is made as to which brother will go to work at the gas sta-
tion, and then the other will stay home and run the printing press
in the basement. Each day that the machine works properly, it is
estimated that 60 usable $20 bills can be produced. However, the
machine is somewhat unreliable and breaks down frequently. If the
machine is not working at the beginning of the day, Buck can have
it in working order by the beginning of the next day with proba-
bility 0.6. If Bill works on the machine, the probability decreases
to 0.5. If Bill operates the machine when it is working, the prob-
ability is 0.6 that it will still be working at the beginning of the
next day. If Buck operates the machine, it breaks down with prob-
ability 0.6. (Assume for simplicity that all breakdowns occur at the
end of the day.) The brothers now wish to determine the optimal
policy for when each should stay home in order to maximize their
(long-run) expected average profit (amount of usable counterfeit
money produced) per day.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average net profit per period in terms of the un-
known steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

21.2-8. A person often finds that she is up to 1 hour late for work.
If she is from 1 to 30 minutes late, $4 is deducted from her pay-
check; if she is from 31 to 60 minutes late for work, $8 is deducted
from her paycheck. If she drives to work at her normal speed (which

he averages no gain or loss on his poker play. The man wishes to
find the policy regarding when to provide refreshments that will
minimize his (long-run) expected average cost per week.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average cost per period in terms of the unknown
steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state probabil-
ities for each policy. Then evaluate the expression obtained in
part (b) to find the optimal policy by exhaustive enumeration.

21.2-5.* When a tennis player serves, he gets two chances to serve
in bounds. If he fails to do so twice, he loses the point. If he at-
tempts to serve an ace, he serves in bounds with probability �

3
8

�. If
he serves a lob, he serves in bounds with probability �

7
8

�. If he serves
an ace in bounds, he wins the point with probability �

2
3

�. With an in-
bounds lob, he wins the point with probability �

1
3

�. If the cost is �1
for each point lost and 	1 for each point won, the problem is to
determine the optimal serving strategy to minimize the (long-run)
expected average cost per point. (Hint: Let state 0 denote point
over, two serves to go on next point; and let state 1 denote one
serve left.)
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average cost per point in terms of the unknown
steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

21.2-6. Each year Ms. Fontanez has the chance to invest in two
different no-load mutual funds: the Go-Go Fund or the Go-Slow
Mutual Fund. At the end of each year, Ms. Fontanez liquidates her
holdings, takes her profits, and then reinvests. The yearly profits
of the mutual funds are dependent upon how the market reacts each
year. Recently the market has been oscillating around the 12,000
mark from one year end to the next, according to the probabilities
given in the following transition matrix:

11,000 12,000 13,000

Each year that the market moves up (down) 1,000 points, the Go-
Go Fund has profits (losses) of $20,000, while the Go-Slow Fund



0.2

0.4

0.4

0.5

0.5

0.4

0.3

0.1

0.2



11,000

12,000

13,000
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She wishes to determine when she should speed and when she
should take her time getting to work in order to minimize her (long-
run) expected average cost per day.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average cost per period in terms of the unknown
steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state probabil-
ities for each policy. Then evaluate the expression obtained in
part (b) to find the optimal policy by exhaustive enumeration.

21.2-9. Consider an infinite-period inventory problem involving a
single product where, at the beginning of each period, a decision
must be made about how many items to produce during that pe-
riod. The setup cost is $10, and the unit production cost is $5. The
holding cost for each item not sold during the period is $4 (a max-
imum of 2 items can be stored). The demand during each period
has a known probability distribution, namely, a probability of �

1
3

� of
0, 1, and 2 items, respectively. If the demand exceeds the supply
available during the period, then those sales are lost and a short-
age cost (including lost revenue) is incurred, namely, $8 and $32
for a shortage of 1 and 2 items, respectively.
(a) Consider the policy where 2 items are produced if there are no

items in inventory at the beginning of a period whereas no
items are produced if there are any items in inventory. Deter-
mine the (long-run) expected average cost per period for this
policy. In finding the transition matrix for the Markov chain
for this policy, let the states represent the inventory levels at
the beginning of the period.

(b) Identify all the feasible (stationary deterministic) inventory
policies, i.e., the policies that never lead to exceeding the stor-
age capacity.

21.3-1. Reconsider Prob. 21.2-1.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-2.* Reconsider Prob. 21.2-2.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-3. Reconsider Prob. 21.2-3.
(a) Formulate a linear programming model for finding an optimal

policy.

is well under the speed limit), she can arrive in 20 minutes. How-
ever, if she exceeds the speed limit a little here and there on her
way to work, she can get there in 10 minutes, but she runs the risk
of getting a speeding ticket. With probability �

1
8

� she will get caught
speeding and will be fined $20 and delayed 10 minutes, so that it
takes 20 minutes to reach work.

As she leaves home, let s be the time she has to reach work
before being late; that is, s � 10 means she has 10 minutes to get
to work, and s � 	10 means she is already 10 minutes late for
work. For simplicity, she considers s to be in one of four intervals:
(20, �), (10, 19), (	10, 9), and (	20, 	11).

The transition probabilities for s tomorrow if she does not
speed today are given by
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The transition probabilities for s tomorrow if she speeds to
work today are given by

Note that there are no transition probabilities for (20, �) and
(	10, 9), because she will get to work on time and from 1 to 30
minutes late, respectively, regardless of whether she speeds. Hence,
speeding when in these states would not be a logical choice.

Also note that the transition probabilities imply that the later
she is for work and the more she has to rush to get there, the more
likely she is to leave for work earlier the next day.

(20, �) (10, 19) (�10, 9) (�20, �11)

(20, �) �
3
8

� �
1
4

� �
1
4

� �
1
8

�

(10, 19) �
1
2

� �
1
4

� �
1
8

� �
1
8

�

(	10, 9) �
5
8

� �
1
4

� �
1
8

� 0

(	20, 	11) �
3
4

� �
1
4

� 0 0

(20, �) (10, 19) (�10, 9) (�20, �11)

(20, �)

(10, 19) �
3
8

� �
1
4

� �
1
4

� �
1
8

�

(	10, 9)

(	20, 	11) �
5
8

� �
1
4

� �
1
8

� 0



D,I 21.4-6. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-6.

D,I 21.4-7. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-7.

D,I 21.4-8. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-8.

D,I 21.4-9. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-9.

D,I 21.4-10. Consider the blood-inventory problem presented in
Prob. 16.6-5. Suppose now that the number of pints of blood de-
livered (on a regular delivery) can be specified at the time of de-
livery (instead of using the old policy of receiving 1 pint at each
delivery). Thus, the number of pints delivered can be 0, 1, 2, or 3
(more than 3 pints can never be used). The cost of regular deliv-
ery is $50 per pint, while the cost of an emergency delivery is $100
per pint. Starting with the proposed policy given in Prob. 16.6-5,
perform two iterations of the policy improvement algorithm.

I 21.5-1.* Joe wants to sell his car. He receives one offer each
month and must decide immediately whether to accept the offer.
Once rejected, the offer is lost. The possible offers are $600, $800,
and $1,000, made with probabilities �

5
8

�, �
1
4

�, and �
1
8

�, respectively (where
successive offers are independent of each other). There is a main-
tenance cost of $60 per month for the car. Joe is anxious to sell
the car and so has chosen a discount factor of � � 0.95.

Using the policy improvement algorithm, find a policy that
minimizes the expected total discounted cost. (Hint: There are two
actions: Accept or reject the offer. Let the state for month t be the
offer in that month. Also include a state �, where the process goes
to state � whenever an offer is accepted and it remains there at a
monthly cost of 0.)

21.5-2.* Reconsider Prob. 21.5-1.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

I 21.5-3.* For Prob. 21.5-1, use three iterations of the method of
successive approximations to approximate an optimal policy.

I 21.5-4. The price of a certain stock is fluctuating between $10,
$20, and $30 from month to month. Market analysts have predicted
that if the stock is at $10 during any month, it will be at $10 or
$20 the next month, with probabilities �

4
5

� and �
1
5

�, respectively; if the
stock is at $20, it will be at $10, $20, or $30 the next month, with
probabilities �

1
4

�, �
1
4

�, and �
1
2

�, respectively; and if the stock is at $30, it
will be at $20 or $30 the next month, with probabilities �

3
4

� and �
1
4

�, re-
spectively. Given a discount factor of 0.9, use the policy improve-

C (b) Use the simplex method to solve this model. Use the re-
sulting optimal solution to identify an optimal policy.

21.3-4. Reconsider Prob. 21.2-4.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-5.* Reconsider Prob. 21.2-5.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-6. Reconsider Prob. 21.2-6.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-7. Reconsider Prob. 21.2-7.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-8. Reconsider Prob. 21.2-8.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-9. Reconsider Prob. 21.2-9.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

D,I 21.4-1. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-1.

D,I 21.4-2.* Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-2.

D,I 21.4-3. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-3.

D,I 21.4-4. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-4.

D,I 21.4-5.* Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-5.
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Unfortunately, there is a time delay in setting up the pollution
control processes, so that a decision as to which process to use
must be made in the month prior to the production decision. Man-
agement wants to determine a policy for when to use each pollu-
tion control process that will minimize the expected total dis-
counted amount of all future pollution with a discount factor of 
� � 0.5.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states, the decisions, and the Cik. Identify all the
(stationary deterministic) policies.

I (b) Use the policy improvement algorithm to find an optimal
policy.

21.5-8. Reconsider Prob. 21.5-7.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

I 21.5-9. For Prob. 21.5-7, use two iterations of the method of suc-
cessive approximations to approximate an optimal policy.

I 21.5-10. Reconsider Prob. 21.5-7. Suppose now that the com-
pany will be producing either of these chemicals for only 4 more
months, so a decision on which pollution control process to use 1
month hence only needs to be made three more times. Find an op-
timal policy for this three-period problem.

I 21.5-11.* Reconsider the prototype example of Sec. 21.1. Sup-
pose now that the production process using the machine under con-
sideration will be used for only 4 more weeks. Using the discounted
cost criterion with a discount factor of � � 0.9, find the optimal
policy for this four-period problem.

ment algorithm to determine when to sell and when to hold the
stock to maximize the expected total discounted profit. (Hint: In-
clude a state that is reached with probability 1 when the stock is
sold and with probability 0 when the stock is held.)

21.5-5. Reconsider Prob. 21.5-4.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

I 21.5-6. For Prob. 21.5-4, use three iterations of the method of
successive approximations to approximate an optimal policy.

21.5-7. A chemical company produces two chemicals, denoted by
0 and 1, and only one can be produced at a time. Each month a
decision is made as to which chemical to produce that month. Be-
cause the demand for each chemical is predictable, it is known that
if 1 is produced this month, there is a 70 percent chance that it will
also be produced again next month. Similarly, if 0 is produced this
month, there is only a 20 percent chance that it will be produced
again next month.

To combat the emissions of pollutants, the chemical company
has two processes, process A, which is efficient in combating the
pollution from the production of 1 but not from 0, and process B,
which is efficient in combating the pollution from the production
of 0 but not from 1. Only one process can be used at a time. The
amount of pollution from the production of each chemical under
each process is
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